8月24日,荷兰代尔夫特技术大学的物理学家罗纳德·汉森(Ronald Hanson)领导的团队在论文预印本网站arXiv上传了他们最新的论文,报道他们实现了第一例可以同时解决探测漏洞和通信漏洞的贝尔实验。该研究组使用了一种巧妙的技术,称为“纠缠交换”(entanglement swapping),可以将光子与物质粒子的好处结合在一起。最终测量结果表明两个电子之间的相干性超过了贝尔极限,再一次支持了标准量子力学的观点,否定了爱因斯坦的隐变量理论。不仅如此,由于电子很容易检测,探测漏洞就不是问题了,而两个电子之间的距离又足够远,也填补了通信漏洞。
量子信息领域学者认为,这是一个极为重要的实验,学界等待一个无漏洞的贝尔不等式验证实验太久了,它标志着贝尔不等式可以被称为贝尔定律了。这个实验也宣告了局域隐变量理论的死刑:量子非局域性是真实的。
标准量子力学VS隐变量理论
如果问一位物理学家,史上最成功的物理理论是什么?十有八九,他会回答量子理论。从1900年普朗克发明量子论开始,到1927年海森堡和薛定谔确立了量子力学的数学形式,短短几十年量子理论就占据物理学中的统治地位。人们用它来解释基本粒子的性质、原子发光光谱、原子组成材料的特性,甚至是宇宙的诞生与演化。这一百多年中,量子理论几乎在所有的地方都取得了巨大成功。但对它的根基是否完备,人们一直有争议。
根据量子理论,测量会导致系统波函数的塌缩,被测的物理量才被确定。这非常奇怪,难道说在测量之前物理量就没有意义吗?进而言之,没有观察者,现实世界就不存在吗?从1920到1930年代,爱因斯坦和波尔就量子力学是否完备,量子力学的本质是什么进行了多次论战。1935年,爱因斯坦、波多斯基和罗森(EPR)三人提出了一个佯谬,指出要么量子理论是不完备的,要么量子力学会导致超光速的作用,与局域性相违背[1]。
根据量子理论,微观粒子可以处于量子叠加态。比如说电子的自旋有向上和向下两种状态,这两种自旋态可以处于任意的叠加态。如果有两个电子,它们的自旋态有四种可能:上上,下下,上下和下上。把它们制备到相互纠缠的状态:自旋同时向上和同时向下的叠加态。当我们测量出一个电子的自旋是向上(向下)的,那么另外一个电子的自旋态就塌缩到向上(向下)的状态,不论电子之间的距离到底有多远。这个塌缩是瞬时的,传递速度超越了光速。最新的实验表明,这个超距相互作用传递速度至少是光速的一万倍[2]。
而在爱因斯坦看来,这种超距相互作用是不可思议的,违背了狭义相对论。他认为电子的状态在测量之前就确定好了,自旋状态与测量无关。他呼吁建立一个更一般的局域实在论理论来弥补量子理论的不足,消除超距作用。作为爱因斯坦思想的继承人,玻姆于1952年在标准量子理论中加入了局域的“隐变量”[3],把它变为了一个完全决定性的理论,从而把局域性保存了下来。需要指出的是,后来的研究表明,量子纠缠的超距作用无法实现信息的超光速传递,相对论并没有被破坏。
贝尔不等式:实验可证伪
英国物理学家约翰·贝尔1928年出生,那时量子力学的数学形式已经确立了。等他上大学时,波尔学派对量子理论的解释已经占据了主导地位,但是贝尔对此一直有疑惑。当他读到爱因斯坦与波尔的论战文章后,站在了爱因斯坦一方,因为他觉得爱因斯坦远比波尔聪明。因此,当玻姆隐变量理论出现后,贝尔就成为了隐变量的支持者。大学毕业后,贝尔成为了粒子加速器理论的专家,对量子理论的基础的思考,只是业余爱好。思考了这个问题十几年,他认为问题的关键在于找到一个实验可以验证的判据,来判定隐变量理论与量子理论到底哪个正确。
1963年,贝尔获得了到美国加州斯坦福直线加速器实验室工作一年的机会,从而有时间专门研究隐变量理论。1964年,他定义了一个可观测量,并基于隐变量理论预言的测量值都不大于2[4]。而用量子理论,可以得出其最大值可以到。一旦实验测量的结果大于2,就意味着局域隐变量理论是错误的。贝尔不等式的诞生,宣告了量子理论的局域性争议,从带哲学色彩纯粹思辨变为实验可证伪的科学理论。
虽然贝尔研究隐变量理论的初衷是要证明量子理论非局域性有误,可后来所有的实验都表明局域隐变量理论预言有误,而量子理论的预言与实验一致。1972年,第一个验证量子力学非局域性的实验出现了[5]。1982年,贝尔不等式得到阿兰·阿斯佩(Alain Aspect)等人验证,量子理论胜出[6]。但这些实验中存在漏洞。首先是局域性漏洞:两个纠缠的光子距离太近,对贝尔不等式的违背,有可能是靠某个不大于光速的通讯通道来实现的,而非源自量子理论非局域性;其次是测量漏洞:这些实验是用光子做的,光子探测器效率不够高(阈值是82.8%),不能排除测量漏洞。
约翰·贝尔(John Bell)设想了一个实验,表明大自然中并不存在如爱因斯坦描述般的“隐变量”。物理学家如今已经成功设计并完成了贝尔的实验,得出了无懈可击的结论。图片来源:CERN无漏洞的贝尔不等式验证
从阿斯佩验证贝尔不等式开始到现在,三十多年过去了,人们在光子、原子、离子、超导比特、固态量子比特等许多系统中都验证了贝尔不等式,所有的实验都支持量子理论。有部分基于光子的实验排除了局域性漏洞,可是受限于光子探测器效率,没有排除测量漏洞。有部分基于原子或离子的实验,由于对离子能级探测效率接近于1,排除了测量漏洞,但没有排除局域性漏洞。到目前为止,还没有一个实验能同时排除局域性漏洞和测量漏洞。
荷兰代尔夫特技术大学的罗纳德·汉森研究组,最近在预印本网站arXiv.org上公布了一篇实验论文,报道了他们在金刚石色心系统中完成的验证贝尔不等式的实验[7]。之所以选择用金刚石色心来做这个实验,有以下几个原因:首先,色心所发出的光子在可见光波段,在光纤中传播损耗非常小;其次,探测色心状态所需要的的时间很短,只要几个微秒。因此,要避免局域性漏洞,只需把两个金刚石色心分别放置在相距1.3公里的两个实验室。利用纠缠光子对和纠缠交换技术,他们实现了金刚石色心电子之间的纠缠。两个色心直接用光通讯所需时间大概4.27微秒,而完成一次实验的时间为4.18微秒,比光通信时间少90纳秒,因此解决了局域性漏洞。此外,色心的测量效率高达96%,测量漏洞也被堵上了。总之,他们声称实现了无漏洞的验证贝尔不等式的实验,在96%的置信度(2.1个标准差)上支持量子理论,从而证伪了局域的隐变量理论。
罗纳德·汉森 图片来源:labmate-online.com这是一个极为重要的实验,学界等待一个无漏洞的贝尔不等式验证实验太久了,它标志着贝尔不等式得到了几乎无漏洞的实验验证,可以被称为贝尔定律了。这个实验也宣告了局域隐变量理论的死刑:量子非局域性是真实的。
很可惜,贝尔本人没能看到这个实验。早在1990年,他就由于中风突然离世。贝尔直到去世前还在研究如何修正正统的测量理论和波函数塌缩理论。尽管一辈子都对量子理论的非局域性和波函数塌缩心怀疑虑,贝尔却恰恰是对量子非局域性研究贡献最大的那个人。
实验的缺陷与应用价值
如果说实验还有什么缺陷的话,首先是置信度不够高,通常我们至少需要有三个标准差的置信度。要得到更让人信服的结果,需要积累更多数据才行。此外,还有“自由意志选择”漏洞未被排除。这个漏洞指的是测量时基矢并非随机选择。在这个实验中,用随机数发生器来选择基矢的,这会受到决定论的挑战。类空间距的量子随机数发生器,其反向光锥在过去的某一点总会相交的,原则上总可以受共同的隐变量来操控,破坏了测量独立性。要解决这个漏洞,必须要依赖人的意志来进行自由选择。人做出选择需要的时间大概是几百毫秒,因此距离至少需要有几万公里[8]。未来,如果我们可以在月亮和地球之间完成对贝尔不等式的验证,就可以弥补这个漏洞。
除此之外,这个实验也有很大的应用价值。无漏洞的贝尔不等式验证实验,为未来实现器件无关的的随机数发生器和量子密钥分发技术提供了技术储备。随着量子密钥分发技术的成熟和广泛应用,今后全量子网络技术将会越来越受到关注。这个实验所实现的距离1.3公里两个固态量子比特之间的量子纠缠制备,是未来实用化的全量子互联网的重要技术支撑。
最后,非常感谢徐达、祖充、魏朝辉、张文卓等人对本文提出的宝贵意见和建议。
(欢迎持不同观点者来论。)
作者:尹璋琦(清华大学交叉信息研究院量子信息中心)
参考文献:
[1] A。 Einstein, B。 Podolsky, N。 Rosen。 “Can quantum-mechanical description of physical reality be considered complete?” Phys。 Rev。 47, 777 (1935)。
[2] Juan Yin, and et al。 “Lower Bound on the Speed of Nonlocal Correlations without Locality and Measurement Choice Loopholes”, Phys。 Rev。 Lett。 110, 260407 (2013)。
[3] David Bohm。 “A Suggested Interpretation of the Quantum Theory in Terms of ‘Hidden’ Variables。 I” Phys。 Rev。 85, 166 (1952)。
[4] J。 S。 Bell。 “On the Einstein Poldolsky Rosen paradox。” Physics 1, 195 (1964)。
[5]Stuart J。 Freedman and John F。 Clauser。 “Experimental Test of Local Hidden-Variable Theories” Phys。 Rev。 Lett。 28, 938 (1972)。
[6] Alain Aspect, Jean Dalibard, and Gérard Roger。 “Experimental Test of Bell‘s Inequalities Using Time- Varying Analyzers” Phys。 Rev。 Lett。 49, 1804 (1982)。
[7] B。 Hensen。 “Experimental loophole-free violation of a Bell inequality using entangled electron spins separated by 1.3 km” arXiv:1508.05949。
[8] A。 Leggett, (2009), Aspect experiment, Compendium of Quantum Physics, Edited by D Greenberger, K Hentschel and F Weinert (Berlin: Springer) pp 14–18。